3.13 \(\int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c-c \sin (e+f x)} \, dx\)

Optimal. Leaf size=69 \[ \frac {2 \sec (e+f x) \sqrt {a \sin (e+f x)+a}}{c f}-\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a}}\right )}{c f} \]

[Out]

-2*arctanh(cos(f*x+e)*a^(1/2)/(a+a*sin(f*x+e))^(1/2))*a^(1/2)/c/f+2*sec(f*x+e)*(a+a*sin(f*x+e))^(1/2)/c/f

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {2934, 2773, 206, 2736, 2673} \[ \frac {2 \sec (e+f x) \sqrt {a \sin (e+f x)+a}}{c f}-\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a}}\right )}{c f} \]

Antiderivative was successfully verified.

[In]

Int[(Csc[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x]),x]

[Out]

(-2*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/Sqrt[a + a*Sin[e + f*x]]])/(c*f) + (2*Sec[e + f*x]*Sqrt[a + a*Sin[e
 + f*x]])/(c*f)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2673

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*(g*
Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m - 1)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rule 2736

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2934

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])
), x_Symbol] :> Dist[1/c, Int[Sqrt[a + b*Sin[e + f*x]]/Sin[e + f*x], x], x] - Dist[d/c, Int[Sqrt[a + b*Sin[e +
 f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{c-c \sin (e+f x)} \, dx &=\frac {\int \csc (e+f x) \sqrt {a+a \sin (e+f x)} \, dx}{c}+\int \frac {\sqrt {a+a \sin (e+f x)}}{c-c \sin (e+f x)} \, dx\\ &=\frac {\int \sec ^2(e+f x) (a+a \sin (e+f x))^{3/2} \, dx}{a c}-\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{c f}\\ &=-\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{c f}+\frac {2 \sec (e+f x) \sqrt {a+a \sin (e+f x)}}{c f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.35, size = 157, normalized size = 2.28 \[ \frac {\sec (e+f x) \sqrt {a (\sin (e+f x)+1)} \left (\cos \left (\frac {1}{2} (e+f x)\right ) \left (\log \left (\sin \left (\frac {1}{2} (e+f x)\right )-\cos \left (\frac {1}{2} (e+f x)\right )+1\right )-\log \left (-\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )+1\right )\right )+\sin \left (\frac {1}{2} (e+f x)\right ) \left (\log \left (-\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )+1\right )-\log \left (\sin \left (\frac {1}{2} (e+f x)\right )-\cos \left (\frac {1}{2} (e+f x)\right )+1\right )\right )+2\right )}{c f} \]

Antiderivative was successfully verified.

[In]

Integrate[(Csc[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x]),x]

[Out]

(Sec[e + f*x]*(2 + Cos[(e + f*x)/2]*(-Log[1 + Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + Log[1 - Cos[(e + f*x)/2]
+ Sin[(e + f*x)/2]]) + (Log[1 + Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - Log[1 - Cos[(e + f*x)/2] + Sin[(e + f*x
)/2]])*Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])])/(c*f)

________________________________________________________________________________________

fricas [B]  time = 0.46, size = 202, normalized size = 2.93 \[ \frac {\sqrt {a} \cos \left (f x + e\right ) \log \left (\frac {a \cos \left (f x + e\right )^{3} - 7 \, a \cos \left (f x + e\right )^{2} - 4 \, {\left (\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 3\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 3\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {a} - 9 \, a \cos \left (f x + e\right ) + {\left (a \cos \left (f x + e\right )^{2} + 8 \, a \cos \left (f x + e\right ) - a\right )} \sin \left (f x + e\right ) - a}{\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right )^{2} - 1\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 1}\right ) + 4 \, \sqrt {a \sin \left (f x + e\right ) + a}}{2 \, c f \cos \left (f x + e\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c-c*sin(f*x+e)),x, algorithm="fricas")

[Out]

1/2*(sqrt(a)*cos(f*x + e)*log((a*cos(f*x + e)^3 - 7*a*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + (cos(f*x + e) + 3)*
sin(f*x + e) - 2*cos(f*x + e) - 3)*sqrt(a*sin(f*x + e) + a)*sqrt(a) - 9*a*cos(f*x + e) + (a*cos(f*x + e)^2 + 8
*a*cos(f*x + e) - a)*sin(f*x + e) - a)/(cos(f*x + e)^3 + cos(f*x + e)^2 + (cos(f*x + e)^2 - 1)*sin(f*x + e) -
cos(f*x + e) - 1)) + 4*sqrt(a*sin(f*x + e) + a))/(c*f*cos(f*x + e))

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c-c*sin(f*x+e)),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)-4*sqrt(2*a)*(1/4*sign(cos(1/2*(f*x+exp(1))-1/4*pi))/c/sin(1/4*(2*f*x+2*exp(1)-pi))+1/4*sign(cos(1/2*(f*x+
exp(1))-1/4*pi))*ln(abs(-2*sqrt(2)+4*sin(1/4*(2*f*x+2*exp(1)-pi)))/abs(2*sqrt(2)+4*sin(1/4*(2*f*x+2*exp(1)-pi)
)))/sqrt(2)/c)/f

________________________________________________________________________________________

maple [A]  time = 1.37, size = 79, normalized size = 1.14 \[ -\frac {2 \left (1+\sin \left (f x +e \right )\right ) \left (\arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}}{\sqrt {a}}\right ) a \sqrt {a -a \sin \left (f x +e \right )}-a^{\frac {3}{2}}\right )}{\sqrt {a}\, c \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c-c*sin(f*x+e)),x)

[Out]

-2/a^(1/2)/c*(1+sin(f*x+e))*(arctanh((a-a*sin(f*x+e))^(1/2)/a^(1/2))*a*(a-a*sin(f*x+e))^(1/2)-a^(3/2))/cos(f*x
+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {\sqrt {a \sin \left (f x + e\right ) + a}}{{\left (c \sin \left (f x + e\right ) - c\right )} \sin \left (f x + e\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(1/2)/sin(f*x+e)/(c-c*sin(f*x+e)),x, algorithm="maxima")

[Out]

-integrate(sqrt(a*sin(f*x + e) + a)/((c*sin(f*x + e) - c)*sin(f*x + e)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+a\,\sin \left (e+f\,x\right )}}{\sin \left (e+f\,x\right )\,\left (c-c\,\sin \left (e+f\,x\right )\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^(1/2)/(sin(e + f*x)*(c - c*sin(e + f*x))),x)

[Out]

int((a + a*sin(e + f*x))^(1/2)/(sin(e + f*x)*(c - c*sin(e + f*x))), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \frac {\int \frac {\sqrt {a \sin {\left (e + f x \right )} + a}}{\sin ^{2}{\left (e + f x \right )} - \sin {\left (e + f x \right )}}\, dx}{c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(1/2)/sin(f*x+e)/(c-c*sin(f*x+e)),x)

[Out]

-Integral(sqrt(a*sin(e + f*x) + a)/(sin(e + f*x)**2 - sin(e + f*x)), x)/c

________________________________________________________________________________________